The MSA to LSA transition in North Africa, with special reference to Taforalt cave

Nick Barton*, R. Nicholas Barton*,†, Abdeljalil Bouzouggar‡, Simon Collcutt§, Louise Humphrey¶, Jacob Morales®, and Alison Roberts*

1University of Oxford – Royaume-Uni
2INSAP University of Rabat – Maroc
3Independent consultant – Royaume-Uni
4Natural History Museum, London – États-Unis
5University of Gran Canaria – Espagne
6Ashmolean Museum – Royaume-Uni

Résumé

A longstanding debate in Africa concerns the precise chronological and cultural relationship of the MSA (Middle Stone Age) to the LSA (Later Stone Age). In sub-Saharan Africa, this is sometimes because there is a question over the definition of the LSA or it is a matter of poor chronological control (for recent discussion see, Tryon and Faith 2016; Loftus et al. 2016; Pargeter and Redondo 2015). In North Africa, the matter is potentially clearer because there appears to be less variation in the LSA (Bouzouggar et al. 2008; Barton et al. 2016). In broad terms, the North African MSA is represented by Levallois flake and blade industries that sometimes contain small cores and a range of potential projectile forms such as bifacial foliates and tanged points that define the Aterian. These industries which date from at least 130 ka are attributed to early forms of Homo sapiens. In contrast, the LSA (25-10 ka Cal BP) is identified with a more recent demographic expansion of modern humans into North Africa (Maca-Meyer et al. 2003; Pereira et al. 2010) and is associated with a microlithic bladelet culture known as the Iberomaurusian. Previously it had been believed that a considerable time gap of more than 20 ka separated these cultural entities but, as a result of recent fieldwork and dating programmes at Taforalt and other sites, this hiatus has been considerably narrowed, raising the possibility of greater continuity in human populations from the MSA to LSA. In this paper we discuss the MSA to LSA transition at Taforalt and the occurrence of a lithic technology that falls within this timespan. The latter appears to have few direct counterparts in North Africa. It contains well-made adzes and triangular-sectioned tools that show some morphological parallels with Lupemban picks.

References


*Intervenant
†Auteur correspondant: nick.barton@arch.ox.ac.uk
‡Auteur correspondant: abouzouggar@yahoo.fr
2016.

Bouzouggar, A., Barton, R.N.E., Blockley, S., Bronk-Ramsey, C., Collcutt, S.N., Gale, R.,

Nelson Bay Cave and Byneskranskop 1: Implications for the South African Later Stone Age
Sequence. Radiocarbon 58, 2, 365-381.

2003. Mitochondrial DNA transit between West Asia and North Africa inferred from U6

Pargeter, J., Redondo, M., 2015. Contextual approaches to studying unretouched
bladelets: a case study from Sehonghong rockshelter, Lesotho. Quaternary International
(in press).

Pereira, L., Silva, N.M., Franco-Duarte, R., Fernandes, V., Pereira, J.B., Costa, M.D.,
expansion in the North African Late Pleistocene signalled by mitochondrial DNA haplogroup
U6. BMC Evolutionary Biology 10, 390.

Tryon, C.A., Faith, J.T., 2016 A demographic perspective on the Middle to
Later Stone Age transition from Nasera rockshelter, Tanzania. Phil. Trans. R. Soc. B371:
20150238.

http://dx.doi.org/10.1098/rstb.2015.0238

Mots-Clés: Middle Stone Age, Later Stone Age, Iberomaurusian, North Africa, Homo sapiens