Programs > By author > Cavallo Giovanni

Methodological approach in ochre provenance studies: preliminary results on the so called Cheops' ochre from the Western desert of Egypt
Maria Pia Riccardi  1, *@  , Giovanni Cavallo  1, 2, *@  , Vincenzo De Michele  3, *@  , Gian Paolo Sighinolfi  4, *@  
1 : Department of Earth and Environmental Sciences, University of Pavia
2 : Institute of Materials and Constructions, University of Applied Sciences and Arts of Southern Switzerland
3 : (formerly) Museum of Natural History of Milan
4 : (formerly) Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia
* : Corresponding author

The scientific approach in ochre provenance studies is generally based on the use of geochemical analysis (Green and Watling, 2007; Popelka-Filcoff et al., 2008; Sunday Eiselt et al., 2011; Bu and Cizdziel, 2013; MacDonald et al., 2013) even though recently the adoption of microscopic (PLM and SEM/EDXS) and mineralogical analysis (XRPD) (Pradeau et al., 2016; Salomon et al., 2008; Dayet et al., 2016; Cavallo et al., 2017a; 2017b; 2017c) demonstrated their validity and suitability in such research.

The possibility to study the raw materials collected during an expedition carried out many years ago in the Southern Egyptian Great Sand Sea desert, gave us the opportunity to adopt the same methodological approach with the aim to create homogeneous groups of sample on the basis of mineralogical, textural and micro-structural features. Yellow and red ochre samples are associated with the Aptian Abu Ballas Formation which represents a thin marine intercalation within the continental sandstones of the Nubia Group (Böttcher, 1985). Preliminary XRPD analysis allowed to state that the mineralogical composition of the analysed samples is very similar. They are composed of kaolinite, quartz and hematite or goethite depending on the colour.

This research represents a unique attempt to focus on raw materials which were presumably used in prehistoric settlements in the outcropping area but also during the Dynastic age (Negro et al., 2005).



 Böttcher, R. (1985). Environmental model of the shallow marine Abu Ballas Formation (Aptian, Nubia Group) in South-Western Egypt. N. Jb. Geol. Abh., 169, 3, 261-283.

Bu, K., Cizdziel, J. V. (2013). The source of iron-oxide pigments used in Pecos river style rock paints. Archaeometry, 55, 6, 1088-1100.

Cavallo G., Riccardi M. P., Zorzin R. (2017a) The geo-mineralogical approach in ochre provenance studies in “The exploitation of the raw materials in prehistory: sourcing, processing and distribution” (Edited by T. Pereira, X. Terradas, N. Bicho), Ch. 39, 558-569. Cambridge Scholars Publishing. ISBN (10):1-4438-9597-0/ ISBN (13):978-1-4438-9597-2.

Cavallo G., Fontana F., Gonzato F., Peresani M., Riccardi M. P., Zorzin R. (2017b) Textural, microstructural, and compositional characteristics of Fe-based geomaterials and Upper Palaeolithic ochre in the Lessini Mountains, Northeast Italy: Implications for provenance studies. Geoarchaeology, 32, 437-455.

Cavallo G., Fontana F., Gonzato F., Guerreschi A., Riccardi M.P., Sardelli G., Zorzin R. (2017c) Sourcing and Processing of Ochre During the Late Upper Palaeolithic at Tagliente Rock-shelter (NE Italy) Based on Conventional X-Ray Powder Diffraction Analysis. Journal of Archaeological and Anthropological Sciences, 9(5), 763-775. 2015:DOI 10.1007/s12520-015-0299-3.

Dayet L., Le Bourdonnec F.-X., Daniel F., Porraz G., Texier P.-J. (2016). Ochre provenance and procurement strategies during the Middle Stone Age at Diepkloff rock shelter South Africa. Archaeometry 58(5), 807–829

Green, R. L., Watling, R. J. (2007). Trace element fingerprint of Australian ocher using Laser Ablation Inductively Coupled Plasm Mass Spectrometry (LA-ICP-MS) for the provenance establishment and Authentication of Indigenous Art. Jour Forensic Sci, 42, 4, 851-859.

Negro, G., De Michele, V., Piacenza, B. (2005). The Lost Ochre Quarries of king Cheops and Djedefre in the Great Sand Sea (Western Desert of Egypt). Sahara. Preistoria e Storia del Sahara. Centro Studi Luigi Negro, 16, 121-127.

MacDonald, B. L., Hancock, R. G. V., Cannon, A., Mcneill, F., Reimer, R., Pidruczny, A. (2013). Elemental analysis of ocher outcrops in Southern British Columbia, Canada. Archaeometry, 55, 6, 1020-1033.

Popelka-Filcoff, R. S., Miksa, E. J., Robertson, J. D., Glascock, M. D., Wallace, H. (2008). Elemental analysis and characterization of ochre sources from Southern Arizona. Journal of Archaeological Science, 35, 752-762.

Pradeau J.-V., Binder D., Vérati C., Lardeaux J.-M., Dubernet S., Lefrais Y., Regert M. (2016). Procurement strategies of Neolithic colouring materials: Territoriality and networks from 6th to 5th millenia BCE in North-Western Mediterranean. Journal of Archaeological Science, 71, 10-23.

Salomon H., Vignaud C., Coquinot Y., Pagès-Camagna S., Pomiès M.-P., Geneste J.-M., Menu M., Julien M., David F. (2008). Les matières colorantes au début du Paléolithique supérieur: caractérisation chimique et structurale, transformation et valeur symbolique. PRNC, 15-21.

Sunday Eiselt, B., Popelka-Filcoff, R. S., Darling, J. A., Glascock, M. D. (2011). Hematite sources and archaeological ochres from Hohokam and O'odham sites in central Arizona: an experiment in type identification and characterization. Journal of Archaeological Science, 38, 3019-3028.

Online user: 2 RSS Feed